For effectively fighting worldwide infectious diseases such as cutaneous leishmaniasis, novel approaches are required. Photodynamic Therapy (PDT) is one such possibility. PDT involves applying a light-sensitive chemical (photosensitizer), which should be highly efficient, non-toxic, and work at longer light wavelengths. This photosensitizer needs to be activated by a light source that provides uniform emission over a large area, high intensity, easy to fabricate, compact, and low cost. In this work, we designed and built light sources based upon commercially available Organic Light Emitting Diode (OLED) and LED parts to experimentally validate the combination with methylene blue photosensitizer to kill Leishmania major and Crithidia fasciculata cells in vitro. Our results showed that suitable-sized OLEDs, as compact and uniform light sources, are very good candidates for photodynamic therapy and can be used to efficiently kill such kinetoplastids in vitro. Therefore, it has real potential to be used in wearable devices for ambulatory treatment of patients.
Keywords:
Published on: Aug 29, 2023 Pages: 25-30
Full Text PDF
Full Text HTML
DOI: 10.17352/2455-5363.000058
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."